A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm 2 observed in situ in a capillary cell†

نویسندگان

  • Kai Liu
  • Peng Bai
  • Martin Z. Bazant
  • Chang-An Wang
  • Ju Li
چکیده

While lithium metal anodes have the highest theoretical capacity for rechargeable batteries, they are plagued by the growth of lithium dendrites, side reactions, and a moving contact interface with the electrolyte during cycling. Here, we synthesize a non-porous, elastomeric solid–electrolyte separator, which not only blocks dendritic growth more effectively than traditional polyolefin separators at large current densities, but also accommodates the large volume change of lithiummetal by elastic deformation and conformal interfacial motion. Specially designed transparent capillary cells were assembled to observe the dynamics of the lithium/rubber interface in situ. Further experiments in coin cells at a current density of 10 mA cm 2 and an areal capacity of 10 mA h cm 2 show improved cycling stability with this new rubber separator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries

The use of lithium (Li) metal anodes has been reconsidered because of the necessity for a higher energy density in secondary batteries. However, Li metal anodes suffer from 'dead' Li formation and surface deactivation which consequently form a porous layer of redundant Li aggregates. In this work, a fibrous metal felt (FMF) as a three-dimensional conductive interlayer was introduced between the...

متن کامل

Functional metal–organic framework boosting lithium metal anode performance via chemical interactions† †Electronic supplementary information (ESI) available: Experimental details on preparation of MOF materials and fabrication of MOF-coated separators, characterization methods for Li|Cu and Li|Li cells, measurement of Li+ transference numbers, TEM images and XRD patterns of MOF materials, additional electrochemical data for MOF-coated separators, and comparison with the state-of-the-art Li anodes. See DOI: 10.1039/c7sc00668c Click here for additional data file.

Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal electrodes in future generations of high-energy-density rechargeable batteries. This article reports the first study on metal–organic framework (MOF) materials for boosting the electrochemical performance of Li metal electrodes and demonstrates the power of molecular-structure functionaliza...

متن کامل

Functional metal-organic framework boosting lithium metal anode performance via chemical interactions.

Dendrite growth and low coulombic efficiency are two major factors that limit the utilization of Li metal electrodes in future generations of high-energy-density rechargeable batteries. This article reports the first study on metal-organic framework (MOF) materials for boosting the electrochemical performance of Li metal electrodes and demonstrates the power of molecular-structure functionaliza...

متن کامل

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly re...

متن کامل

The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017